Chapter 2 - Matchings and Coverings - Tutte's Theorem

Let G be a graph. Let C_G the set of its connected components, and by q(G) the number of its connected components of odd order (odd components).

1: Find $S \subseteq V(G)$ such that q(G - S) > |S|.

2: Show that if G has a perfect matching (1-factor), then

 $q(G-S) \le |S|$ for all $S \subseteq V(G)$. (Tutte's condition)

Solution: Let M be a 1-factor (perfect matching). Let $S \subseteq V$. For each odd component X_i exists $x_i \in X_i$ that is matched by M to a vertex y_i not in X_i . This means $y_i \in S$. Since M is a matching, $y_i \neq y_j$ if $i \neq j$. Hence $|S| \ge q(G-S)$.

Theorem (Tutte 1947)

A graph G has a perfect matching (1-factor) if and only if $q(G-S) \leq |S|$ for all $S \subseteq V(G)$.

Proof: "If G has a 1-factor then it satisfies Tutte's condition." is already proved.

Goal: "If G does not have a 1-factor then G does not satisfy Tutte's condition." I.e. If no 1-factor, then there is $S \subset V(G)$ such that q(G - S) > |S|.

Trick: Let G' be a maximal graph without 1-factor such that G is a subgraph of G'.

3: Show that if $S \subseteq V(G') = V(G)$ and q(G' - S) > |S|, then also q(G - S) > |S|.

Solution: If vertices belong to different components in G'-S, they are also in different components of G - S. So components do not merge. Now if X was a component in G'-S, it may fall apart into several components. But if |X| is odd, at least one of the components in G[X] is odd. So $q(G - S) \ge q(G' - S)$.

Now we continue with G' only.

4: Show that G' is not a complete graph.

Solution: If G' is a complete graph, then it does not have a 1-factor iff |V(G)| is odd and then $S = \emptyset$ will work.

Our main goal is to show that every component of G' - S is complete. First we show how it is useful.

5: Assume that every component of G' - S is complete, i.e. induces a clique. Now show that if $q(G - S) \leq |S|$, then G' has a perfect matching.

Solution: Now vertices in each even component of G - S can be perfectly matched. In odd component, all but one vertex can be matched. This remaining vertex can be match to S, as long as $q(G - S) \leq |S|$. Finally, if there are any vertices in S still unmatched, they can be matched to each other.

Now towards the complete components. Let X be vertices of a component of G' - S and assume G'[X] is not complete. This gives vertices $a, a' \in X$ such that $aa' \notin E(G')$. Let a, b, c, \ldots be the shortest a - a' path in G'[X]. Notice that $ac \notin E(G')$. (Why)? Since $b \notin S$, there exists $d \in V(G')$ such that $bd \notin E(G')$.

By maximality of G', G' + ac contains a 1-factor M_1 and G' + bd contains a 1-factor M_2 .

6: Make a sketch of the situation. Now our goal is to find a 1-factor in G', giving a contradiction. We try to get it from M_2 by replacing edge bd. Consider a union of M_1 and M_2 . Then bd is in an even cycle C. How to use this even cycle to obtain a 1-factor in G'? What if $ac \in C$?

Solution: First, if $ac \notin C$, then $C - M_2$ are all edges of G. Notice that swapping M_2 for M_1 on C makes a 1-factor that exists in G, done.

Now $ac \in C$. Then we cannot do the switch, but we can still find an even cycle, that allows for the swith. Assume that the cycle C looks like $b, d, \ldots, a, c, \ldots$. Take a cycle $C' = b, d, \ldots, a, b$. Notice it is still an even cycle and not all edges of $C' - M_2$ are in G'. We can then switch on C' instead of C.

Corollary (Petersen 1891) Every bridgeless cubic graph has a 1-factor.

7: Prove the corollary. Here is the plan. Let G be a cubic bridgeless graph. Pick $S \subseteq V(G)$ and verify Tutte's condition. Hint: If G[X] is an odd component, how many edges go between G[X] and S? (use bridgeless and handshake lemma)

Solution: