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Chapter 2 - Matchings and Coverings - Tutte’s Theorem

Let G be a graph. Let CG the set of its connected components, and by q(G) the number of its connected
components of odd order (odd components).

1: Find S ⊆ V (G) such that q(G− S) > |S|.

2: Show that if G has a perfect matching (1-factor), then

q(G− S) ≤ |S| for all S ⊆ V (G). (Tutte’s condition)

Solution: Let M be a 1-factor (perfect matching). Let S ⊆ V . For each odd com-
ponent Xi exists xi ∈ Xi that is matched by M to a vertex yi not in Xi. This means
yi ∈ S. Since M is a matching, yi 6= yj if i 6= j. Hence |S| ≥ q(G− S).

Theorem (Tutte 1947)
A graph G has a perfect matching (1-factor) if and only if q(G− S) ≤ |S| for all S ⊆ V (G).

Proof: “If G has a 1-factor then it satisfies Tutte’s condition.” is already proved.

Goal: “If G does not have a 1-factor then G does not satisfy Tutte’s condition.”
I.e. If no 1-factor, then there is S ⊂ V (G) such that q(G− S) > |S|.

Trick: Let G′ be a maximal graph without 1-factor such that G is a subgraph of G′.

3: Show that if S ⊆ V (G′) = V (G) and q(G′ − S) > |S|, then also q(G− S) > |S|.

Solution: If vertices belong to different components in G′−S, they are also in different
components of G − S. So components do not merge. Now if X was a component in
G′−S, it may fall apart into several components. But if |X| is odd, at least one of the
components in G[X] is odd. So q(G− S) ≥ q(G′ − S).

cbna by Bernard Lidický, Following Diestel Chapter 2.2

https://creativecommons.org/licenses/by-nc-sa/4.0/


Fall 2021 Math 567:7 2/2

Now we continue with G′ only.

4: Show that G′ is not a complete graph.

Solution: If G′ is a complete graph, then it does not have a 1-factor iff |V (G)| is odd
and then S = ∅ will work.

Our main goal is to show that every component of G′ − S is complete. First we show how it is useful.

5: Assume that every component of G′−S is complete, i.e. induces a clique. Now show that if q(G−S) ≤ |S|,
then G′ has a perfect matching.

Solution: Now vertices in each even component of G − S can be perfectly matched.
In odd component, all but one vertex can be matched. This remaining vertex can be
match to S, as long as q(G − S) ≤ |S|. Finally, if there are any vertices in S still
unmatched, they can be matched to each other.

Now towards the complete components. Let X be vertices of a component of G′ − S and assume G′[X] is not
complete. This gives vertices a, a′ ∈ X such that aa′ 6∈ E(G′). Let a, b, c, . . . be the shortest a − a′ path in
G′[X]. Notice that ac 6∈ E(G′). (Why)? Since b 6∈ S, there exists d ∈ V (G′) such that bd 6∈ E(G′).

By maximality of G′, G′ + ac contains a 1-factor M1 and G′ + bd contains a 1-factor M2.

6: Make a sketch of the situation. Now our goal is to find a 1-factor in G′, giving a contradiction. We try to
get it from M2 by replacing edge bd. Consider a union of M1 and M2. Then bd is in an even cycle C. How to
use this even cycle to obtain a 1-factor in G′? What if ac ∈ C?

Solution: First, if ac /∈ C, then C −M2 are all edges of G. Notice that swapping M2

for M1 on C makes a 1-factor that exists in G, done.

Now ac ∈ C. Then we cannot do the switch, but we can still find an even cycle, that
allows for the swith. Assume that the cycle C looks like b, d, . . . , a, c, . . .. Take a cycle
C ′ = b, d, . . . , a, b. Notice it is still an even cycle and not all edges of C ′ −M2 are in
G′. We can then switch on C ′ instead of C.

Corollary (Petersen 1891) Every bridgeless cubic graph has a 1-factor.

7: Prove the corollary. Here is the plan. Let G be a cubic bridgeless graph. Pick S ⊆ V (G) and verify Tutte’s
condition. Hint: If G[X] is an odd component, how many edges go between G[X] and S? (use bridgeless and
handshake lemma)

Solution:
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